

First clinical experience with the novel videolaryngoscope i-scoop during spontaneous breathing and conscious sedation

Prof. Dr. Konstantinos Raymondos, Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Germany

Background

Serious complications:

45× higher in anticipated difficult vs normal airways → 0.3% vs 0.007%¹

Serious adverse events in ICU intubations: $45\% \rightarrow 150\times$ and $>6,400\times$, these elective rates²

Aspiration of gastric content:

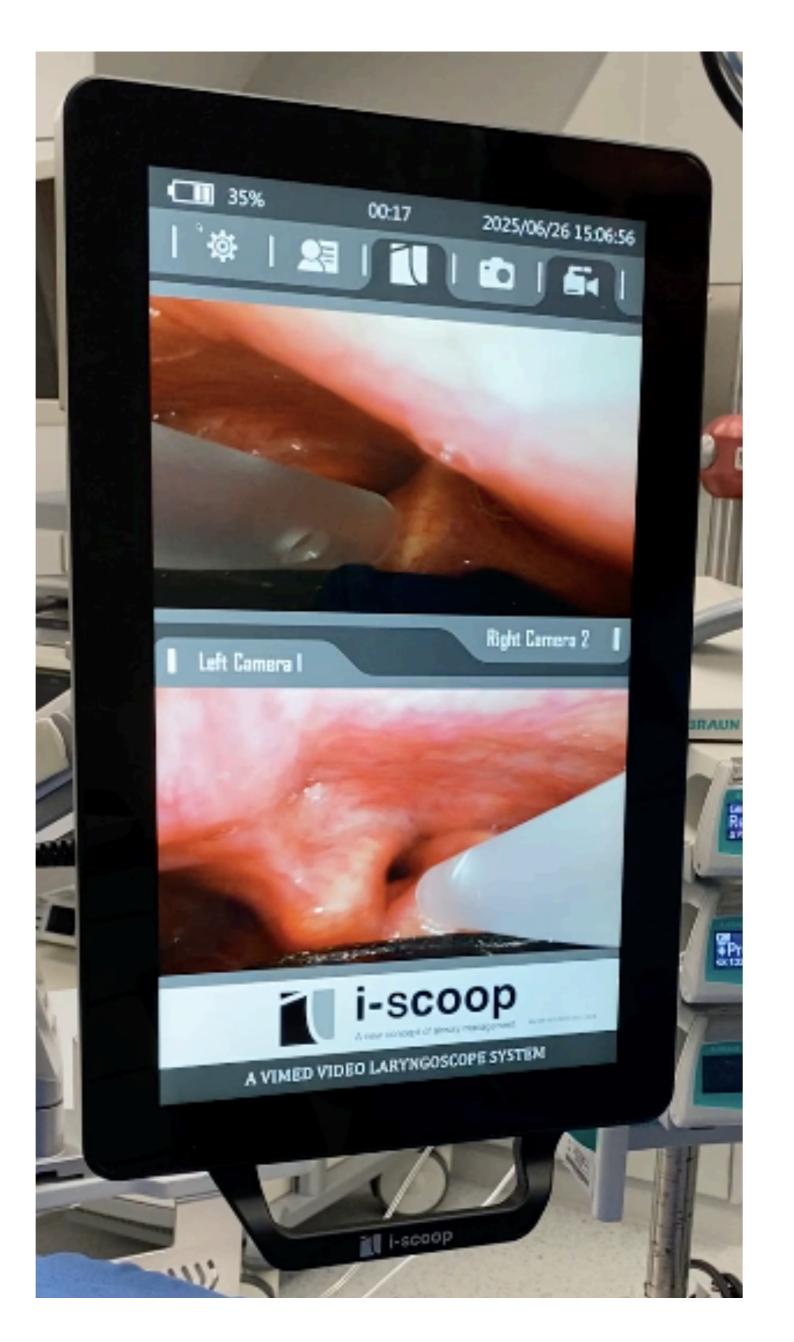
>0.2% during in-hospital general anaesthesia³
18% in out-of-hospital intubations → 90× higher⁴

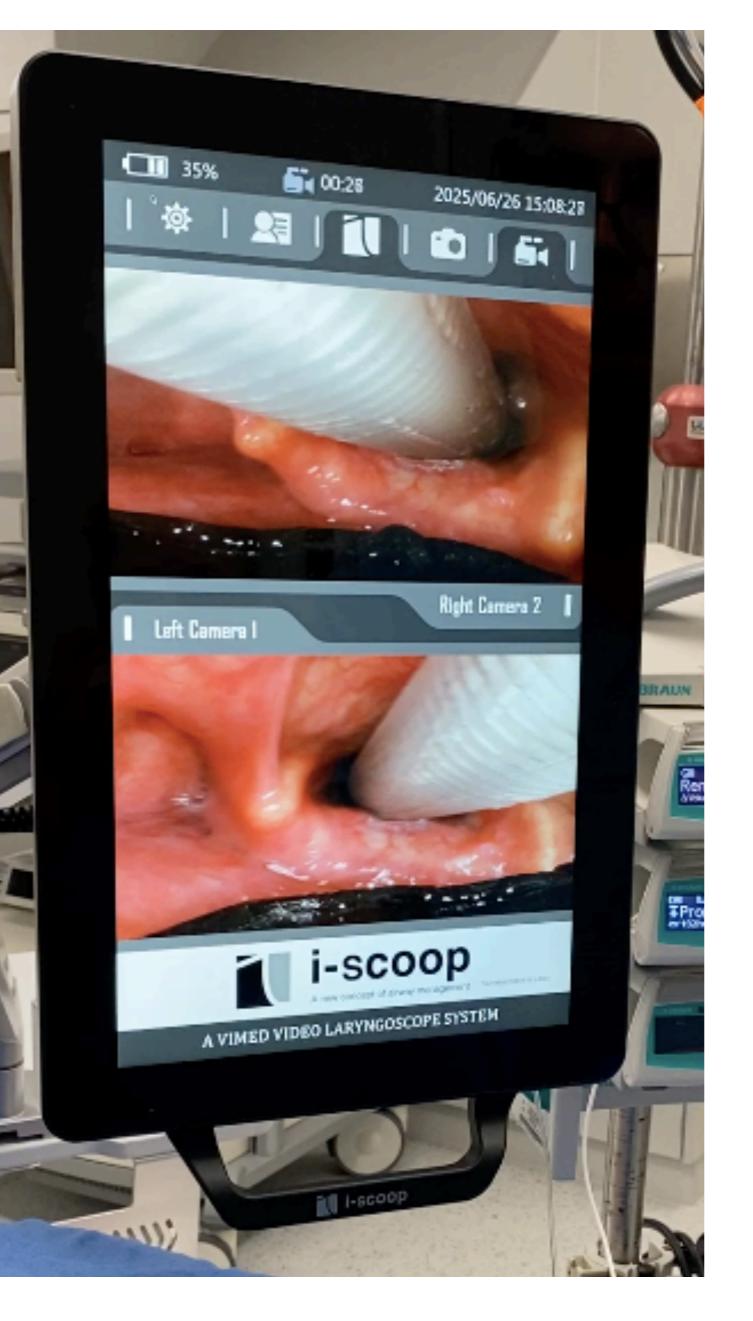
Intubation under preserved spontaneous breathing: 0.2% overall; 2.7% when difficulty is anticipated¹

- New approach: keep all patients breathing!
- Adoption barrier: limited clinical practicability
- Potential key enabler:

The i-scoop:

- bladeless, anatomyguided insertion (LMAlike)
- low force, minimal softtissue trauma
- subepiglottic placement of the dual optics and tube-guiding bar
- best possible close-up laryngeal view from two perspectives
- stylet-free, vision-guided intubation
- dual suction automatically positioned at the oesophageal inlet (arrows →)


The i-scoop outperformed all other videolaryngoscopes in simulated normal and difficult airways.⁵


Early data in anaesthetised patients are promising.6

The performance during spontaneous breathing is not known.

Methods

Design: retrospective analysis. Study population: **41 elective urology patients** with written consent for scientific analysis. Approval: Ethics Committee, Hannover Medical School. Population: first consecutive cases intubated with the i-scoop (Vimed Medical Device, People's Republic of China; Supporting Health Care, the Netherlands) under standardised analgosedation with preserved spontaneous breathing between 13 May and 26 June 2025.

Conscious sedation: remifentanil 0.3 μg/kg (reference weight = height[cm]-100) + propofol 0.6 mg/kg. Maintenance: remifentanil 0.05 μg/kg/min; propofol 2 mg/kg/h. Additional boluses as required: propofol 0.3 mg/kg; max one bolus remifentanil 0.3 μg/kg. Anxiolysis if required: midazolam 1 mg.

Topical anaesthesia: lidocaine 1% orally 3–4 × 5 ml (150-200 mg); endotracheal lidocaine 1% 2 ml (20 mg) via i-scoop-guided catheter (**left panel**); intubation 60–90 s later (**right panel**).

Oxygenation: continuous 18 L/min O₂ from pre-oxygenation to intubation; target end-tidal O₂ ≥ 0.60.

Monitoring: Impedance respirography; continuous CO₂ and O₂ waveforms via nasal cannula to assess spontaneous breathing and end-tidal O₂; in-tube capnography for <u>real-time confirmation</u> of correct placement according to PUMA criteria⁷.

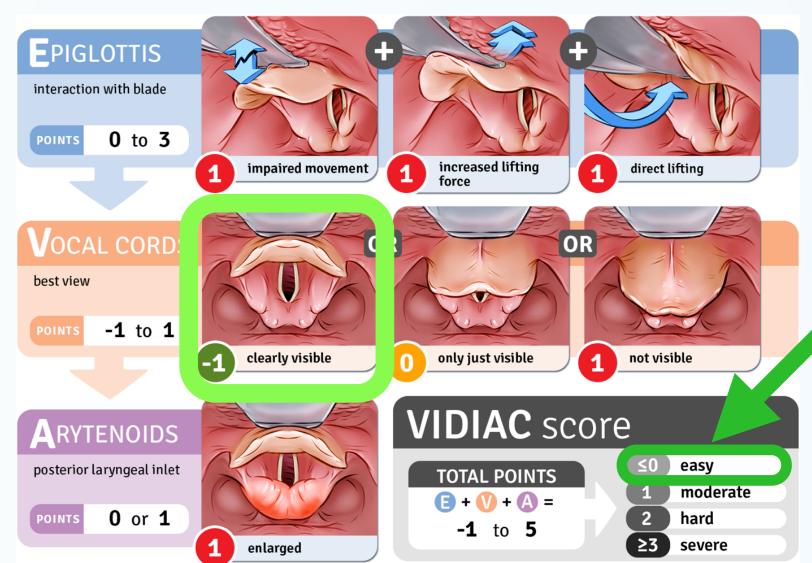
Primary endpoint: 'good clinical practicability' of the overall approach if all criteria met:

Safe visual control:

1. glottis clearly visible

2. visual confirmation of correct tube placement according to PUMA criteria?

Easy intubation:


3. VIDIAC score ≤ 0⁸

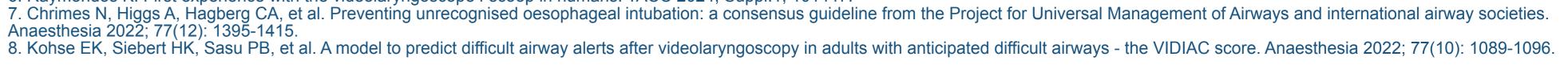
4. first-pass success

5. less than 3 manoeuvres

6. duration ≤ 1 min

No complications: defined as the absence of 7. awareness of endotracheal topical anaesthesia or intubation; 8. SpO₂ < 90%; 9. persistent apnoea; 10. clinically relevant cardiovascular effects; 11. aspiration; 12. symptoms or injuries >3/10 on VAS directly after intervention.

Results


- Median age 62 years (range 33–82); height 176 cm (155–197); weight 81 kg (43–131); BMI 27 (15–48); female 11; El-Ganzouri Index ≥ 4: 9 patients.
- All criteria for 'good clinical practicability' were met in 35/41 patients (85%).
- Both CL grade 1 view and VIDIAC score -1 in all patients; median POGO 100% (75–100%).
- Intubation visually confirmed per PUMA criteria⁷ in 40/41 (98%) (1 exception: first-time user).
- No complications.
- First-pass success 37/41 (90%); ≤2 attempts 40/41 (98%); ≤3 attempts 41/41 (100%).
- Median intubation duration: one experienced operator (n = 34) 18 s after tooth passage (range 6–80 s); three first-time users (soldiers; 7 intubations) 55 s (24–59 s).

Conclusions

- Key message: The i-scoop enabled 'good clinical practicability' of the overall approach to intubation under preserved spontaneous ventilation in nearly nine out of ten patients.
- Routine and competence: Key benefits for all patients—no neuromuscular blockade, much lower anaesthetic dose, steadier haemodynamics, faster recovery, fewer adverse events—may support default use, building routine and strengthening competence for difficult airways and the critically ill.
- Potential impact: This markedly less invasive approach could substantially reduce complications, turn
 a rare exception into standard practice, and make routine care safe by default.

References

Cumberworth A, Lewith H, Sud A, et al. Major complications of airway management: a prospective multicentre observational study. Anaesthesia 2022;77(6):640-648.
 Russotto V, Myatra SN, Laffey JG, et al. Intubation Practices and Adverse Peri-intubation Events in Critically III Patients From 29 Countries. JAMA 2021;325(12):1164-1172.
 Kirmeier E, Eriksson LI, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med 2019;7:129-140.
 Knapp J, Eberle B, et al. Analysis of tracheal intubation in out-of-hospital helicopter emergency medicine recorded by video laryngoscopy. Scand J Trauma Resusc Emerg Med. 2021 Mar 17;29(1): 49.
 Raymondos K, Seidel T, Sander B et al. The intubation scoop (i-scoop) - a new type of laryngoscope for difficult and normal airways. Anaesthesia 2014; 69(9): 990-1001.
 Raymondos K. First experience with the videolaryngoscope i-scoop in humans. TACC 2024; Suppl.1, 101447.

